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Abstract

In this paper, the vibration and stability of orthotropic conical shells with non-homogeneous material properties under a

hydrostatic pressure are studied. At first, the basic relations have been obtained for orthotropic truncated conical shells,

Young’s moduli and density of which vary continuously in the thickness direction. By applying the Galerkin method to the

foregoing equations, the buckling pressure and frequency parameter of truncated conical shells are obtained from these

equations. Finally, carrying out some computations, the effects of the variations of conical shell characteristics, the effects

of the non-homogeneity and the orthotropy on the critical dimensionless hydrostatic pressure and lowest dimensionless

frequency parameter have been studied, when Young’s moduli and density vary together and separately. The results are

presented in tables, figures and compared with other works.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In accordance with the recent developments of science and technology, structural elements composed of
non-homogeneous materials are becoming increasingly used in aerospace industry (e.g., reactor caps, some
critical parts of bullets and rockets, space vehicles, pipes, nuclear reactors) and other high technology
problems due to their high specific strength and specific stiffnesses, lightweight, resistance fatigue and better
design behavior. Materials and structural components are often non-homogeneous, either by design or due to
the physical composition and imperfections in the underlying materials. However, the non-homogeneity of
materials stems from production techniques, surface and thermal polishing processes, effect of radiation, etc.
Thus, the physical properties of materials change continuously from point to point as continuous functions of
coordinates, e.g., the computation of structural members exposed to radiation effects is simplified by
considering a variation of physical properties in the thickness direction, as an initial approximation.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

E0 Young’s modulus of the homogeneous
isotropic conical shell

E0S, E0yYoung’s moduli of the homogeneous
orthotropic conical shells

ES, Ey Young’s moduli of the non-homoge-
neous orthotropic conical shell

f(t) time-dependent amplitude
h thickness of the conical shell
L length of the conical shell
L1 length of the cylindrical shell
MS, My, MSy moment resultants
NS, Ny, NSy force resultants
N0

s ;N
0
y;N

0
Sy membrane forces prior to buckling

n, m wavenumbers
ncr, n1cr circumferential wavenumbers corre-

sponding to critical dimensionless hydro-
static pressure and lowest dimensionless
frequency parameter, respectively

P hydrostatic pressure
Pcr, P1crcritical hydrostatic pressure and critical

dimensionless hydrostatic pressure, re-
spectively

q power-law index
Qij reduced stiffness
R1, R2 average radii of the small and large bases

of the conical shell
R radius of the cylindrical shell
S the coordinate axis through the vertex on

the reference surface of the cone
S1, S2 the inclined distances of the bases of the

cone from the vertex, respectively

w displacement of the reference surface in
the inwards normal direction z

z independent variable
ZB;ZB Batdorf conical and cylindrical shells

parameters, respectively

Greek letters

g semi-vertex angle of the cone
�0S; �

0
y; �

0
Sy strain components on the reference
surface of the conical shell

z the coordinate axis in the inwards normal
direction of the reference surface of the
cone

z ¼ z=h dimensionless thickness coordinate
y angle of rotation around the longitudinal

axis starting from a radial plane
m non-homogeneity coefficient
n0 Poisson’s ratio of the homogeneous

isotropic conical shell
nyS, nSy Poisson’s ratios of the orthotropic con-

ical shell
r0, r densities of the homogeneous and non-

homogeneous orthotropic conical shells,
respectively

sS, sy, sSy stress components
u non-homogeneity parameter
jj z
� �
ðj ¼ 1; 2Þ continuous functions of the non-

homogeneity
C stress function
o frequency
o1 dimensionless frequency parameter
o cyclic natural frequency
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Important contributions to the elasticity theory of non-homogeneous materials and structures have been
brought [1–4].

Thereafter, notable contributions were made [5–9] dealing with various types of non-homogeneity
considerations. In most of these researches, the variation of the elasticity modulus was assumed to be
unbounded and exponential or power functions of the radial or axial coordinates were used. In all the above
studies, Poisson’s ratio was kept constant while the non-homogeneity parameter (or non-homogeneity
function) was assumed arbitrary.

The studies of non-homogeneous orthotropic plates and cylindrical shells with uniform/non-uniform
thickness with various edge conditions have been carried out after 1985 by a number of researchers such as
Refs. [10–17] just to mention the prominent ones. Similarly in three recent studies [18–20], the work dealing
with free vibrations of inhomogeneous membranes has been reported. There is no restriction for non-
homogeneity parameter or non-homogeneity function in all studies mentioned above. However, in actual
engineering applications, the variation of the elastic properties of materials remains in a bounded range and
small enough, necessitating a restriction on the variation (non-homogeneity) functions. Researchers [21–24]
made some restrictions, by assuming the non-homogeneity functions continuous and less than unity.
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Conical shells have been widely used as important structural components in practical engineering
applications, and the vibration and buckling analyses of such components is important for the overall safety
and stability of the whole structure. The buckling behavior of conical shells under hydrostatic pressure was
first studied by Niordson, and a number of investigations have been made on mechanical behavior isotropic
shells [25–35]. For orthotropic shells, there have been fewer studies. Singer [36,37] derived a set of equations
for the buckling of orthotropic conical shells by using the displacement–strain relations given in Ref. [26].
Serpico [38] extended the one-term Reyleigh–Ritz approach of Niordson [24] to the orthotropic conical shells;
but the results are only reliable for short cones. Singer and Fershst-Scher [39] obtained solutions for the
buckling of orthotropic conical shells under hydrostatic pressure. Refs. [40–43] studied the vibration and the
buckling problems of the homogeneous orthotropic conical shells.

The equations of motion for conical shells, according to various thin shell theories, exist in Leissa [44]. The
free vibration of isotropic conical shells has been widely studied by many researchers using various methods
[45–53]. In addition to the work done for free vibrations of isotropic cones, there exists less studies for free
vibration of orthotropic conical shells [54–62].

Vibration and buckling of a general conical shell depends on various parameters, such as the geometric
properties of the shell (the cone semi-vertex angle, the radius at one end, the slant length of the shell and the
thickness), the material properties (isotropic, orthotropic, composite, laminated, etc.) and the type of the
applied load (axial compression, hydrostatic pressure, torsion and combined load).

For a more realistic vibration and buckling analyses of conical shells, the influence of the non-homogeneity
of the material must be considered as well as the above-mentioned factors. When the conical shell is made of
non-homogeneous orthotropic material, solution of the vibration and stability problems becomes more
complicated. The literature on the stability problems of non-homogeneous truncated conical shells under
lateral pressure is very scarce [63–65]. Since the free vibration and the stability of non-homogeneous
orthotropic truncated conical shells under hydrostatic pressure have not been studied yet, the objective of the
present research is to investigate the vibration and stability of orthotropic composite truncated conical shells
subjected hydrostatic pressure, when Young’s moduli and density vary continuously through the thickness
coordinate direction.

2. Basic equations

Consider a circular non-homogeneous orthotropic truncated conical shell as shown in Fig. 1, where g is the
semi-vertex cone angle, L the length, h the thickness, R1 and R2 the radii at the ends. The reference surface of
the conical shell is taken as the middle surface where an orthogonal coordinate system (S, y, z) is fixed. The
S-axis lies on the curvilinear middle surface of the cone, S0 and S1 being the coordinates of the points where
this axis intersects the small and large bases, respectively. Furthermore, the z-axis is always normal to
the moving S-axis, lying in the plane generated by the S-axis and the axis of the cone, and points inwards. The
y-axis is in the direction perpendicular to the S�z plane. The axes of orthotropy are parallel to the curvilinear
Fig. 1. Geometry of a truncated conical shell.



ARTICLE IN PRESS
A.H. Sofiyev et al. / Journal of Sound and Vibration 319 (2009) 963–983966
coordinates S and y. The non-homogeneity of the material of the shell is assumed to arise due to the variation
of Young’s moduli and density along the thickness direction z as [1,2,18]

ES z
� �

;Ey z
� �
;G0 z

� �� �
¼ j1 z

� �
½E0S;E0y;G0�; r z

� �
¼ r0j2 z

� �
; z ¼ z=h (1)

where E0S and E0y are Young’s moduli in the S and y directions, respectively. G0 is the shear modulus on the
plane and r0 the density of homogeneous orthotropic material of shell. Additionally,

jj z
� �
¼ 1þ mjj z

� �
; j ¼ 1; 2 (2)

where j1 z
� �

and j2 z
� �

are continuous functions of non-homogeneity defining the variations of Young’s
moduli and density, respectively, satisfying the condition jj z

� ��� ��p1, and m is a non-homogeneity coefficient,
satisfying 0pmo1. The non-homogeneity functions of the material of the truncated conical shell are assumed
to be power and exponential functions which [1–8,14,18,65]

jj z
� �
¼ �z

q
; j ¼ 1; 2; q ¼ 1; 2; 3 . . . (3)

jj z
� �
¼ �e�0:1 z

�� ��
cos uz
� �

; j ¼ 1; 2 (4)

where q is the power-law index and u is a real number and it is called non-homogeneity parameter or frequency
of the non-homogeneity in direction Oz.

The stress–strain relation for thin non-homogeneous orthotropic truncated conical shells is

sS

sy
sSy

0
B@

1
CA ¼

Q11 Q12 0

Q21 Q22 0

0 0 Q66

2
64

3
75

�0S � z
q2w

qS2

�0y � z
1

S2

q2w

qy21
þ

1

S

qw

qS

 !

�0Sy � z
1

S

q2w

qS qy1
�

1

S2

qw

qy1

� �

2
6666666664

3
7777777775

(5)

where sS, sy and sSy are the stresses, �
0
S and �0y are the normal strains in the curvilinear coordinate directions

S and y on the middle surface, respectively, while �0Sy is the corresponding shear strain, y1 ¼ y sin g, w is the
displacement of the middle surface in the normal direction, positive towards the axis of the cone and assumed
to be much smaller than the thickness. The quantities Qij, i, j ¼ 1,2,6 for an orthotropic lamina are

Q11 ¼
E0Sj1 z

� �
1� nSynyS

; Q22 ¼
E0yj1 z

� �
1� nSynyS

; Q12 ¼ nySQ11; Q21 ¼ nSyQ22; Q66 ¼ 2G0j1 z
� �

(6)

in which nSy and nyS are Poisson’s ratios, assumed to be constant and satisfying nySE0S ¼ nSyE0y [66,67].
The well-known force and moment resultants are expressed by [33,35]

½ðNS;Ny;NSyÞ; ððMS;My;MSyÞ� ¼

Z h=2

�h=2
ð1; zÞðsS;sy;sSyÞdz (7)

The relations between the forces NS, Ny and NSy and the stress function C are given by

ðNS;Ny;NSyÞ ¼
1

S2

q2C

qy21
þ

1

S

qC
qS

;
q2C

qS2
;�

1

S

q2C
qS qy1

þ
1

S2

qC
qy1

 !
(8)

The orthotropic truncated conical shell is simply supported and subjected to a hydrostatic pressure [29]:

N0
S ¼ �0:5PS tan g; N0

y ¼ �PS tan g; N0
Sy ¼ 0 (9)

where N0
s ;N

0
y and N0

Sy are the membrane forces for the condition with zero initial moments. Substituting
expressions (5) in Eq. (7) after some rearrangements, the relations found for moments and strains, being
substituted in Donnell-type stability and compatibility equations of truncated conical shells [33] together with
relation (8), then considering the independent variables S ¼ S1e

z and C ¼ C1e
2z, after lengthy computations,
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the system of differential equations for w and C1 can be obtained as

Y � c12e
2z q

4C1

qz4
þ ðc11 � c22 þ 4c12Þe

2z q
3C1

qz3

þ ð5c12 þ 3c11 � 3c22 � c21 þ S1e
z cot gÞe2z q

2C1

qz2

þ ð2c11 � 2c22 þ 2c12 � 2c21 þ 3S1e
z cot gÞe2z qC1

qz
þ 2S1e

3zC1 cot g

þ c21e
2z q

4C1

qy41
þ ðc11 � 2c31 þ c22Þe

2z q4C1

qz2 qy21
þ ðc11 � 4c31 þ 3c22Þe

2z q3C1

qz qy21

þ 2ðc22 � c31 þ c21Þe
2z q

2C1

qy21
� c24

q4w

qy41
� ðc14 þ c23 þ 2c32Þ

q4w

qz2 qy21

þ ð3c14 þ c23 þ 4c32Þ
q3w

qz qy21
� 2ðc14 þ c32 þ c24Þ

q2w

qy21
� c13

q4w
qz4

þ ð4c13 þ c23 � c14Þ
q3w

qz3
� ð5c13 þ 3c23 � 3c14 � c24Þ

q2w
qz2
þ 2ðc13 þ c23 � c14 � c24Þ

qw

qz

�
PS3

1e
3z tan g
2

q2w

qz2
þ

qw

qz
þ 2

q2w

qj2

� �
� S4

1e
4zrth

q2w
qt2
¼ 0 (10)

r1
q4C1

qz4
þ r2

q3C1

qz3
þ r3

q2C1

qz2
þ r4

qC1

qz
þ r5

q4C1

qz2 qy21
þ r6

q3C1

qz qy21
þ r7

q2C1

qy21
þ r8

q4C1

qy41

¼ e�2z

b14
q4w

qy41
� ð2b32 � b13 � b24Þ

q4w

qz2 qy21
� ð3b24 � 4b32 þ b13Þ

q3w

qz qy21

�2ðb32 � b24 � b14Þ
q2w

qy21
þ b23

q4w
qz4
� ðb13 � b24 þ 4b23Þ

q3w
qz3

�ð�3b13 þ 3b24 � 5b23 þ b14 þ S1e
z cot gÞ

q2w

qz2

�ð2b13 þ 2b23 � 2b14 � 2b24 � S1e
z cot gÞ

qw

qz

2
666666666666664

3
777777777777775

(11)

in which expressions cij, bij, rl (i, j ¼ 1–4, l ¼ 1–8) are defined as follows:

c11 ¼ a1
11b11 þ a1

12b21; c12 ¼ a1
11b12 þ a1

12b22; c13 ¼ a1
11b13 þ a1

12b23 þ a2
11

c14 ¼ a1
11b14 þ a1

12b24 þ a2
12; c21 ¼ a1

21b11 þ a1
22b21; c22 ¼ a1

21b12 þ a1
22b22

c23 ¼ a1
21b13 þ a1

22b14 þ a2
21; c24 ¼ a1

21b14 þ a1
22b13 þ a2

22; c31 ¼ a1
33b31

c32 ¼ a1
33b32 þ a2

33; r1 ¼ b22; r2 ¼ b21 � b12 � 4b22; r3 ¼ �3b21 � b11 þ 5b22 þ 3b12

r4 ¼ 2ðb11 þ b21 � b12 � b22Þ; r5 ¼ 2b31 þ b21 þ b12; r6 ¼ �4b31 � 3b12 � b21

r7 ¼ 2ðb31 þ b21 þ b11Þ; r8 ¼ b11; b11 ¼ a0
22L�10 ; b12 ¼ �a0

12L�10

b13 ¼ ða
0
12a1

21 � a1
11a0

22ÞL
�1
0 ; b14 ¼ ða

0
12a1

22 � a1
12a0

22ÞL
�1
0 ; b21 ¼ �a0

21L�10

b22 ¼ � a0
22L�10 ; b23 ¼ ða

0
21a1

11 � a1
21a0

11ÞL
�1
0 ; b24 ¼ ða

0
21a1

12 � a1
22a0

11ÞL
�1
0

b31 ¼ 1=a0
66; b32 ¼ �a1

66=a0
66; L0 ¼ a0

11a0
11 � a0

12a0
12 (12)
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in which expressions ak
11; a

k
12; a

k
66 ðk ¼ 0; 1; 2Þ are defined as follows:

ak
11 ¼

E0Shkþ1

1� nSynyS

Z 1=2

�1=2
z

k
1þ mj1 z

� �� �
dz̄; ak

22 ¼
E0yhkþ1

1� nSynyS

Z 1=2

�1=2
z

k
1þ mj1 z

� �� �
dz

ak
12 ¼ nySak

11 ¼ ak
21 ¼ nSya

k
22; ak

66 ¼ 2G0hkþ1

Z 1=2

�1=2
z

k
1þ mj1 z

� �� �
dz

rt ¼ r0

Z 1=2

�1=2
1þ mj2 z

� �� �
dz; k ¼ 0; 1; 2 (13)
3. The solution of basic equations

Consider a non-homogenous orthotropic truncated conical shell with simply supported edge conditions.
The solution of Eq. (11) is sought in the following form [35]:

w ¼ f ðtÞez sinðb1zÞ sinðb2y1Þ (14)

where f(t) is the time-dependent amplitude and the following definitions apply:

b1 ¼
mp
z0
; b2 ¼

n

sin g
; z0 ¼ ln

S2

S1
(15)

Function (14) satisfies the periodical conditions of the normal displacements and all orders of the derivatives
for normal displacements and the following geometrical boundary conditions [35]:

wðS; yÞ ¼ 0;
q2wðS; yÞ

qS2
¼ 0 at S ¼ S1 and S ¼ S2 (16)

Substituting expression (14) into Eq. (11) and applying the superposition method to the resulting equation,
the particular solution is obtained as follows:

C1 ¼ f ðtÞ K1 sinðb1zÞ þ K2 cosðb1zÞ þ K3e
�z sinðb1zÞ þ K4e

�z cosðb1zÞ
� �

sinðb2y1Þ (17)

where the following definitions apply:

K1 ¼
b1ðb1x0 þ y0ÞS1 cot g

x2
0 þ y2

0

; K2 ¼
b1ðb1y0 � x0ÞS1 cot g

x2
0 þ y2

0

K3 ¼
z1x1 þ y1z2

x2
1 þ y2

1

; K4 ¼
x1z2 � z1y1

x2
1 þ y2

1

(18)

x0 ¼ � r3b
2
1 þ r5b

2
1b

2
2 � r7b

2
2 þ r1b

4
1 þ r8b

4
2

y0 ¼ r2b
3
1 � r4b1 þ r6b1b

2
2

x1 ¼ r5b
2
1b

2
2 þ ð3r2 � 6r1 � r3Þb

2
1 þ ðr6 � r7 � r5Þb

2
2 þ r1b

4
1 þ r8b

4
2 þ r1 � r2 þ r3 � r4

y1 ¼ ðr6 � 2r5Þb1b
2
2 þ ð2r3 � r4 þ 4r1 � 3r2Þb1 þ ðr2 � 4r1Þb

3
1 (19)

z1 ¼ b14 ðb
2
2 � 1Þ2 þ b21

� �
þ b21 ðb13 � 2b32 þ b24Þb

2
2 þ b23ðb

2
1 þ 1Þ

� �
z2 ¼ ðb24 � b13Þb1ðb

2
2 � b21 � 1Þ (20)

Substituting Eqs. (14) and (17) into Eq. (10) and applying the Galerkin method, we getZ z0

0

Z 2p sin g

0

Yez sinðb1zÞ sinðb2y1Þdzdy1 ¼ 0 (21)
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where the following definition apply:

Y ¼ f ðtÞ

U1e
2z sinðb1zÞ sinðb2y1Þ þU2e

z sinðb1zÞ sinðb2y1Þ

þU3e
2z cosðb1zÞ sinðb2y1Þ þU4e

z cosðb1zÞ sinðb2y1Þ

�ðK2b
2
1 þ K1b1ÞS1e

3z cosðb1zÞ sinðb2y1Þ cot g

þðK2b1 � K1b
2
1ÞS1e

3z sinðb1zÞ sinðb2y1Þ cot g

�S3
1e

4zPð1� 0:5b21 � b22Þ sinðb1zÞ sinðb2y1Þ tan g

�1:5b1S
3
1e

4zP cosðb1zÞ sinðb2y1Þ tan g� S4
1e

5z sinðb1zÞ sinðb2y1Þ
d2

dt2

2
666666666664

3
777777777775

(22)

in which

U1 ¼ K1c12b
4
1 þ K2b

3
1ðc11 � c22 þ 4c12Þ � K1b

2
1ð5c12 þ 3c11 � 3c22 � c21Þ

� 2K2b1ðc11 � c22 þ c12 � c21Þ þ K1b
4
2c21 þ K1b

2
1b

2
2ðc11 � 2c31 þ c22Þ

þ K2b1b
2
2ðc11 � 4c31 þ 3c22Þ � 2K1b

2
2ðc22 � c31 þ c21Þ � ðK3b

2
1 þ K4b1ÞS1 cot g (23.1)

U2 ¼ ðK3b
4
1 þ K3b

2
1Þc12 þ ðK3b

2
1 þ K3 þ K3b

4
2 � 2K3b

2
2Þc21

þ ðK4b
3
1 þ K4b1 � K4b1b

2
2Þðc11 � c22Þ þ K3b

2
1b

2
2ðc11 � 2c31 þ c22Þ

� c13b
4
1 � ðc13 þ c24Þb

2
1 � c24 � c24b

4
2 � b21b

2
2ðc14 þ c23 þ 2c32Þ þ 2c24b

2
2 (23.2)

U3 ¼ K2c12b
4
1 � K1b

3
1ðc11 � c22 þ 4c12Þ � K2b

2
1ð5c12 þ 3c11 � 3c22 � c21Þ

þ 2K1b1ðc11 � c22 þ c12 � c21Þ þ K2b
2
1b

2
2ðc11 � 2c31 þ c22Þ þ K2b

4
2c21

� K1b1b
2
2ð3c22 � 4c31 þ c11Þ � 2K2b

2
2ðc22 � c31 þ c21Þ þ ðK3b1 � K4b

2
1ÞS1 cot g (23.3)

U4 ¼ K4ðb
4
1 þ b21Þc12 þ K4ðb

2
1 þ 1þ b42 � 2b22Þc21 þ K3ðb1b

2
2 � b31 � b1Þðc11 � c22Þ

þ K4b
2
1b

2
2ðc11 � 2c31 þ c22Þ þ ðc14 � c23Þ b1 þ b31 � b1b

2
2

� �
(23.4)

After substituting Eq. (22) into Eq. (21), and integrating it, the equation yields

d2f ðtÞ

dt2
þ

G10

G9rth

G1U1 þ G2U2 þ G3U3 þ G4U4 þ G8

G10
� P

	 

f ðtÞ ¼ 0 (24)

where the following definitions apply:

G1 ¼
2b21

12b21 þ 27
1�

S2

S1

� �3
" #

; G2 ¼
b21

4 b21 þ 1
� � 1�

S2

S1

� �2
" #

; G3 ¼
b1

4b21 þ 9

S2

S1

� �3

� 1

" #

G4 ¼
b1

4 b21 þ 1
� � S2

S1

� �2

� 1

" #
; G5 ¼

b21
8 b21 þ 4
� � 1�

S2

S1

� �4
" #

; G6 ¼
b1

4ðb21 þ 4Þ

S2

S1

� �4

� 1

" #

G7 ¼
b21

12 b21 þ 9
� � S2

S1

� �6

� 1

" #
; G10 ¼

S3
1b

2
1 2b21 þ 4b22 þ 11
� �

tan g

10 25þ 4b21
� � S2

S1

� �5

� 1

" #

G8 ¼ 2K1 � 3K2b1 � K1b
2
1

� �
G5 � K2b

2
1 � 3K1b1 � 2K2

� �
G6

� �
S1 cot g; G9 ¼ S4

1G7 (25)

When P ¼ 0, the following expression is obtained from Eq. (24) for the frequency of free vibration:

o ¼
G1U1 þ G2U2 þ G3U3 þ G4U4 þ G8

G9rth

� �0:5

(26)

The minimum value of the frequency parameter is obtained by minimizing Eq. (26) with respect to m and n.
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The cyclic natural frequency (Hz) of the shell is defined as

o ¼ o=ð2pÞ (27)

The dimensionless frequency parameter o1 is defined as

o1 ¼ oR2 ð1� nySnSyÞr0=E0y
� �0:5

(28)

At the static case, for the hydrostatic buckling pressure, from Eq. (24) the following equation is obtained:

Pcr ¼
U1G1 þU2G2 þU3G3 þU4G4 þ G8

G10
(29)

The dimensionless hydrostatic buckling pressure P1cr is defined as

P1cr ¼
Pcr

E0y
(30)

The minimum value of the dimensionless hydrostatic buckling pressure is obtained by minimizing Eq. (30)
with respect to m and n, the number of longitudinal and circumferential buckling waves, respectively.

4. Numerical computations and results

4.1. Comparative problems

In order to verify the accuracy of the present buckling analysis, eight comparisons are made with the results
existing in the open literature.

As shown in Table 1, the first example is about the buckling of a homogeneous isotropic conical shell under
hydrostatic pressure by simply taking m ¼ 0, E0S ¼ E0y ¼ E0 and nyS ¼ nSy ¼ n0 in the present formulations in
order to convert the non-homogeneous orthotropic conical shell formulation into a homogeneous isotropic
conical shell. A close examination of Table 1 shows that there are good agreements between the present
formulations and the results of Niordson [25], Mushtari and Sachenkov [26], Seide [28] and Singer [29]. The
numbers in brackets indicate the buckling mode (m, n).

The second example is about the buckling of a homogeneous orthotropic conical shell under hydrostatic
pressure. The present non-homogeneous orthotropic conical shell formulation is converted into a
homogeneous orthotropic conical shell by simply letting m ¼ 0. For a homogeneous orthotropic conical
shells of fiber glass reinforced epoxy having g ¼ 301 and 751, S1 ¼ 57.59 Inc., S2 ¼ 86.385 Inc., h ¼ 0.1 Inc.
Table 2 shows the comparison of present results with those reported by Singer and Fershst-Scher [39] and a
good agreement is achieved. In addition, the buckling loads for simply supported, homogeneous isotropic
cylindrical shells under a hydrostatic pressure are calculated and compared in Table 3 with theoretical results
of Hutchinson and Amazigo [68], finite element results obtained by Kasagi and Sridharan [69], and boundary
layer theory solution of Shen and Noda [70]. As shown in Table 3 (identical in Tables 5 and 6), is concerned
Table 1

Comparison of various results for the hydrostatic buckling pressure of conical shells (S1 ¼ 57.59 Inc.; h ¼ 0.1 Inc.; n0 ¼ 0.3)

g (deg) S2/S1 P1cr� 106 and (m, n)

Niordson [25] Mushtari and

Sachenkov [26]

Seide [28] Singer [29] Present study

10 1.5 2.29 2.35 2.35 2.35 2.284 (1,6)

10 2.5 0.484 0.539 0.534 0.545 0.471 (1,4)

30 1.5 0.396 0.406 0.405 0.405 0.393 (1,12)

30 4.0 0.0225 0.0332 0.0284 0.0272 0.0219 (1,8)

30 5.0 0.0128 0.0215 0.0169 0.0155 0.0121(1,8)

30 10.0 0.00228 0.00617 0.00368 0.00278 0.00191(1,8)
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Table 2

Comparisons of dimensionless buckling loads P1cr for homogeneous orthotropic conical shells under a hydrostatic pressure

(S1 ¼ 57.59 Inc., S2 ¼ 86.385 Inc., h ¼ 0.1 Inc.)

P1cr� 106 and (m, n)

g (deg) E0S/E0y nyS Singer and Fershst-Scher [39] Present study

30 2.591 0.090 0.2041 0.1877 (1,14)

30 0.386 0.234 0.7732 0.732 (1,11)

75 2.591 0.090 0.0142 0.0129 (1,15)

75 0.386 0.234 0.0487 0.0450 (1,14)

Table 3

Comparisons of buckling loads Pcr (psi) for homogeneous isotropic cylindrical shells under a hydrostatic pressure (R/h ¼ 200)

ZB Shen and Noda [70] Hutchinson and Amazigo

[68] (theoretical study)

Kasagi and Sridharan

[69] (FEM study)

Present study

10 87.077 (1,18) 89.07 (1,18) 88.65 (1,18) 88.952 (1,18)

50 35.167 (1,13) 35.25 (1,13) 35.09 (1,13) 35.211 (1,13)

100 24.305 (1,11) 24.35 (1,11) 24.26 (1,11) 24.320 (1,11)

500 10.436 (1,8) 10.45 (1,8) 10.42 (1,8) 10.440 (1,8)

1000 7.398 (1,7) 7.412 (1,7) 7.388 (1,7) 7.400 (1,7)

5000 3.416 (1,5) 3.423 (1,5) 3.412 (1,5) 3.416 (1,5)

10,000 2.315 (1,4) 2.319 (1,4) 2.312 (1,4) 2.315 (1,4)

0

2

4

6

8

30 45 60 75

Hydrostatic Pressure Lateral Pressure

P 1
cr

×1
06

γ (angle)

Fig. 2. Comparison of various results for dimensionless hydrostatic and lateral buckling pressures of homogeneous orthotropic truncated

conical shells.
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about buckling of a homogeneous isotropic cylindrical shell by taking g ¼ p/180,000E01, m ¼ 0,
E0S ¼ E0y ¼ E0 and nyS ¼ nSy ¼ n0 in the present formulations; and then the non-homogeneous orthotropic
conical shell becomes a homogeneous isotropic cylindrical shell. Furthermore, ZB ¼ ½L

2
1=ðRhÞ�ð1� n20Þ

1=2 is the
Batdorf cylindrical shell parameter [70]. Here, R and L1 are the radius and length of cylindrical shell,
respectively. The material properties are, as stated by Hutchinson and Amazigo [68], E0 ¼ 10� 106 psi,
n0 ¼ 0.33. The numbers in brackets indicate the buckling mode (m, n). It is clear that, for most cases the
present results agree well with the existing results. The critical values of the hydrostatic and the lateral
pressures and the corresponding wavenumbers for different semi-vertex angle for the orthotropic truncated
conical shells are given in Fig. 2. Computational data for the material properties are E0S ¼ 1.724�
1011Nm�2, E0y ¼ 7.79� 109Nm�2, nyS ¼ 0.35, r0 ¼ 1530 kgm�3 shell geometry properties are R2/h ¼ 500
and L ¼ 0.25R2 sin g. As shown in Fig. 2, the critical value of hydrostatic pressure is quite different from the
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Table 4

Comparisons of frequency parameter o1 of a homogeneous isotropic truncated conical shell with simply supported at both ends (n0 ¼ 0.3,

h/R2 ¼ 0.01, L ¼ 0.25S2)

n Tong [57] Lam and Li [59] and Li [60]

301 451 601 301 451 601

2 0.7910 0.6879 0.5720 0.8420 0.7655 0.6348

3 0.7284 0.6973 0.5998 0.7376 0.7212 0.6238

4 0.6353 0.6664 0.6048 0.6362 0.6739 0.6145

5 0.5531 0.6304 0.6069 0.5528 0.6323 0.6111

6 0.4949 0.6032 0.6147 0.4950 0.6035 0.6171

7 0.4643 0.5918 0.6329 0.4661 0.5921 0.6350

8 0.4644 0.5992 0.6632 0.4660 0.6001 0.6660

9 0.4892 0.6257 0.7060 0.4916 0.6273 0.7101

n Liew et al. [53] Irie et al. [48] Present study

301 301 451 601 301 451 601

2 0.7904 0.7910 0.6879 0.5722 0.7943 0.7169 0.6017

3 0.7274 0.7284 0.6973 0.6001 0.7085 0.6832 0.5959

4 0.6339 0.6352 0.6664 0.6054 0.6199 0.6462 0.5922

5 0.5514 0.5531 0.6304 0.6077 0.5437 0.6130 0.5937

6 0.4930 0.4949 0.6032 0.6159 0.4896 0.5901 0.6036

7 0.4632 0.4643 0.5918 0.6343 0.4623 0.5824 0.6240

8 0.4623 0.4645 0.5992 0.6650 0.4627 0.5924 0.6563

9 0.4870 0.4892 0.6257 0.7084 0.4882 0.6204 0.7009

Table 5

Comparison of o (Hz) of an isotropic cylindrical shell (h ¼ 0.000648m, R ¼ 0.2423m, L ¼ 0.6096m, E0 ¼ 6.895� 104MPa, n0 ¼ 0.315,

m ¼ 1, r0 ¼ 2714.5 kgm�3)

n Naem and Sharma [72] with

N1 ¼ 8

Sewal and Naumann [71]

(experimental study)

Present study

4 287.59 287.0 297.70

5 201.85 203.0 and 211.0 207.07

6 166.59 175.0 170.64

7 166.22 163.0 and 169.0 170.21

8 189.29 188.0 193.37

9 226.88 224.0 231.03

10 274.09 268.0 278.28

11 328.64 326.0 332.85

12 389.49 382.0 and 385.0 393.74

13 456.21 440.0 460.49

14 528.56 – 532.87

15 606.45 590.0 610.78
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critical value of lateral pressure. For example, in the case of g ¼ 451, percent difference between the critical
values of hydrostatic and the lateral pressures is 9%.

In order to examine the accuracy of the present free vibration analysis, seven comparisons are made with the
results available in the literature.

Table 4 shows the dimensionless frequency parameters oI for a homogeneous isotropic conical shell with
h/R2 ¼ 0.01, L ¼ 0.25S2 and different g values, with longitudinal wavenumber m ¼ 1. The present results are
compared with solutions given by Irie et al. [48], Tong [57], Lam and Li [59], Li [60] and Liew et al. [53] and a
good agreement is obtained for all the modes. In the study of Liew et al. [53], for the free vibration frequency,
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Table 6

Comparison of o (Hz) of an isotropic cylindrical shell (h ¼ 0.000247m, L/R ¼ 2, E0 ¼ 71.02� 109Nm�2, n0 ¼ 0.31, m ¼ 1,

r0 ¼ 2796kgm�3)

n Pellicano [73] (theoretical study) Pellicano [73] (FEM study) Present study

6 553.3 553.3 564.1

7 484.6 484.6 493.7

8 489.6 489.6 498.5

9 546.2 546.2 555.3

10 636.8 636.8 645.9

11 750.7 750.7 759.8

12 882.2 882.2 891.4

0.00
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0.50

0.75

1.00

0 2 4 6 8 10 12 14 16 18 20
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υ

P 1
cr

×1
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Fig. 3. Variation of P1cr with the non-homogeneity parameter u for j1 z
� �

.
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the parameters are the same and calculation were carried on only for g ¼ 301, and the tabulated results exists
in Table 4.

A comparison of the natural frequencies for a homogeneous isotropic cylindrical shell with those available
in the literature obtained by various methods has been presented in Tables 5 and 6, where o ¼ o=ð2pÞ ðHzÞ
the cyclic natural frequencies of the shell and N1 are show the number of polynomials. Table 5 presents the
comparison of the natural frequencies o ðHzÞ for a homogeneous isotropic cylindrical shell, with those
obtained in Ref. [71] experimentally and those obtained in Ref. [72] analytically. It is observed that there is a
good match between the results of the two studies. The highest percentage of the difference between the two
being 5.5%, it corresponds to the circumferential wavenumber n ¼ 4. Table 6 shows the comparison of the
natural frequencies o ðHzÞ for a homogeneous isotropic cylindrical shell, with those obtained in Ref. [73] by
using finite element method and theoretically. It is observed that there is a good match between the results of
studies. The lowest and highest percentages of the difference between the two beings are 1% and 1.9%,
respectively.

Based on the above comparisons of Tables 1–6, the accuracy of the present study is validated.

4.2. Vibration and buckling analyses

Numerical computations, for homogeneous and non-homogeneous orthotropic truncated conical shells
have been carried out using expressions (28) and (30). The results are presented in Figs. 3–10 and Tables 7–10.

Homogeneous and non-homogeneous orthotropic truncated conical shells with different types of geometry
are considered and their critical dimensionless hydrostatic pressure and lowest frequency parameter are
computed. Values of the critical parameters are obtained for 10pZBp150, i.e., for short shells; for
150oZBo1500, i.e., for medium length shells; for 1500pZBp5000, i.e., for long shells and for ZB45000, i.e.,
for very long shells. Here, ZB ¼ 2L2ð1� n20Þ

1=2 cos g=ðR1 þ R2Þh is the Batdorf conical shell parameter [32].
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Fig. 4. Variation of frequency parameter o1 with the non-homogeneity parameter u for jj z
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Fig. 6. Variation of frequency parameter o1 with the non-homogeneity parameter u for j1 z
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Fig. 7. Variations of the values of P1cr for homogeneous and non-homogeneous orthotropic, short truncated conical shells with respect to

semi-vertex angles g (R1/h ¼ 200, L/R1 ¼ 0.5, m ¼ 0.9, j ¼ 1).
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Fig. 8. Variations of the values of P1cr for homogeneous and non-homogeneous orthotropic, medium length, truncated conical shells with

respect to semi-vertex angles g (R1/h ¼ 200, L/R1 ¼ 2, m ¼ 0.9, j ¼ 1).
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Fig. 9. Variations of the values of P1cr for homogeneous and non-homogeneous orthotropic, long truncated conical shells with respect to

semi-vertex angles g (R1/h ¼ 200, L/R1 ¼ 10, m ¼ 0.9, j ¼ 1).
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Fig. 10. Variations of the values of P1cr for homogeneous and non-homogeneous orthotropic truncated conical shells versus m (L/R1 ¼ 2,

g ¼ 451, R1/h ¼ 200, j ¼ 1).
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Composite material properties are given below [66,67]:

E0S ¼ 1:724� 1011 Nm�2; E0y ¼ 7:79� 109 Nm�2; nyS ¼ 0:35; r0 ¼ 1530 kgm�3

Numerical analyses are realized to define the change intervals of non-homogeneity parameter u, and to
determine the effects on critical parameters when Young’s moduli and density, as together and separately,
vary as exponential function. Figs. 3–6 illustrate the results of the numerical analyses.



ARTICLE IN PRESS

Table 7

Variations of the values of P1cr and ncr for homogeneous and non-homogeneous orthotropic truncated conical shells with ratios L/R1

(g ¼ 451, R1/h ¼ 200, m ¼ 0.9, j ¼ 1)

jj z
� �

Hom. �z z
2

z
3

L/R1 P1cr� 106 and (ncr)

0.25 18.558 (28) 17.339 (28) 21.0323 (28) 18.530 (28)

0.50 5.065 (20) 4.758 (20) 5.711 (19) 5.058 (20)

0.75 2.537 (17) 2.395 (17) 2.854 (17) 2.534 (17)

1.0 1.574 (16) 1.488 (16) 1.770 (16) 1.572 (16)

2.0 0.486 (14) 0.460 (14) 0.546 (14) 0.485 (14)

3.0 0.231 (13) 0.219 (13) 0.259 (13) 0.231 (13)

4.0 0.133 (13) 0.126 (13) 0.149 (12) 0.133 (13)

5.0 0.084 (12) 0.080 (12) 0.094 (12) 0.084 (12)

6.0 0.057 (12) 0.054 (12) 0.064 (12) 0.057 (12)

7.0 0.040 (12) 0.038 (12) 0.045 (12) 0.040 (12)

8.0 0.030 (12) 0.028 (12) 0.033 (12) 0.030 (12)

9.0 0.023 (12) 0.022 (12) 0.025 (12) 0.023 (12)

10 0.018 (12) 0.017 (12) 0.020 (12) 0.018 (12)

20 0.002 (9) 0.002 (9) 0.002 (9) 0.002 (9)

jj z
� �

e�0:1 z
�� ��

cos 0:7z
� �

�e�0:1 z
�� ��

cos 0:7z
� �

�z
2

�z
3

L/R1 P1cr� 106 and (ncr)

0.25 34.074 (28) 3.042 (28) 16.083 (28) 18.530 (28)

0.50 9.309 (20) 0.818 (19) 4.412 (20) 5.058 (20)

0.75 4.667 (17) 0.407 (17) 2.220 (17) 2.534 (17)

1.0 2.897 (16) 0.252 (16) 1.379 (16) 1.572 (16)

2.0 0.894 (14) 0.077 (13) 0.426 (14) 0.485 (14)

3.0 0.426 (13) 0.037 (13) 0.203 (13) 0.231 (13)

4.0 0.245 (13) 0.021 (12) 0.117 (13) 0.133 (13)

5.0 0.154 (12) 0.013 (12) 0.074 (12) 0.084 (12)

6.0 0.105 (12) 0.009 (12) 0.050 (12) 0.057 (12)

7.0 0.074 (12) 0.006 (12) 0.036 (12) 0.040 (12)

8.0 0.055 (12) 0.005 (12) 0.026 (12) 0.030 (12)

9.0 0.042 (12) 0.004 (11) 0.020 (12) 0.023 (12)

10 0.033 (12) 0.003 (11) 0.016 (12) 0.018 (12)

20 0.003 (9) 0.000270 (9) 0.001 (9) 0.002 (9)

A.H. Sofiyev et al. / Journal of Sound and Vibration 319 (2009) 963–983976
In Fig. 3 are seen three curves pertaining to the critical dimensionless hydrostatic pressure for three different

forms of Young’s moduli variation functions. In curve 1, the case of j1 z
� �
¼ e�0:1 z

�� ��
cos uz
� �

and m ¼ 0.90 is

considered. For 0pup4.5, the critical dimensionless hydrostatic pressure is higher than that for the
homogeneous case and takes its maximum value for u ¼ 0 as (0.908� 10�6). For 4.5oup12, it is lower than
the value for the homogeneous case and takes its minimum value for W ¼ 8 as (0.212� 10�6). Curve 2
corresponds to the homogeneous case and the pertinent value of the critical dimensionless hydrostatic pressure

is 0.486� 10�6. In curve 3, the case of j1 z
� �
¼ �e�0:1 z

�� ��
cos uz
� �

and m ¼ 0.90 is considered. For 0pup4.5, the

critical dimensionless hydrostatic pressure is lower than that for the homogeneous case and takes its minimum
value for u ¼ 0 as (0.064� 10�6), whereas, for 4.5oup12, it takes higher values and is a maximum for u ¼ 8,
taking the value (0.737� 10�6). For 4ouo5 and u411, the effect of the variation of Young’s moduli on the
critical dimensionless hydrostatic pressure is very little (Fig. 3).

In Fig. 4 are shown three curves pertaining to the lowest frequency parameter for three different forms of

Young’s moduli and density variation functions. In curve 1, the case of jjðzÞ ¼ e�0:1 z
�� ��

cos uz
� �

ðj ¼ 1; 2Þ and

m ¼ 0.90 is considered. For 0pup11.6, the frequency parameter is lower than that for the homogeneous case
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Table 8

Variations of the lowest values of o1 and n1cr for homogeneous and non-homogeneous orthotropic truncated conical shells with ratios L/

R1 (g ¼ 451, R1/h ¼ 200, m ¼ 0.9, j ¼ 1,2)

jj z
� �

Hom. (0) �z z
2

�z
2 (+exp) (�exp)

L/R1 o1 and (n1cr) (j ¼ 1,2)

0.25 1.467 (1) 1.429 (1) 1.497 (1) 1.431 (1) 1.459 (1) 1.560 (1)

0.50 0.749 (11) 0.737 (11) 0.759 (10) 0.737 (11) 0.747 (11) 0.779 (10)

0.75 0.541 (12) 0.532 (12) 0.548 (12) 0.533 (12) 0.539 (12) 0.563 (11)

1.0 0.435 (12) 0.428 (12) 0.441 (12) 0.428 (12) 0.433 (12) 0.453 (11)

2.0 0.251 (2) 0.251 (2) 0.251 (2) 0.251 (2) 0.251 (2) 0.252 (2)

3.0 0.203 (11) 0.200 (11) 0.206 (11) 0.200 (11) 0.203 (11) 0.211 (10)

4.0 0.168 (10) 0.165 (10) 0.170 (10) 0.165 (10) 0.167 (10) 0.174 (10)

5.0 0.139 (5) 0.139 (5) 0.140 (5) 0.139 (5) 0.139 (5) 0.140 (5)

6.0 0.071 (5) 0.070 (5) 0.071 (5) 0.070 (5) 0.071 (5) 0.071 (5)

7.0 0.113 (10) 0.111 (10) 0.114 (10) 0.111 (10) 0.112 (10) 0.117 (10)

8.0 0.100 (6) 0.100 (6) 0.101 (6) 0.100 (6) 0.100 (6) 0.101 (6)

9.0 0.077 (6) 0.077 (6) 0.077 (6) 0.077 (6) 0.077 (6) 0.078 (6)

10 0.051 (6) 0.051 (6) 0.052 (6) 0.051 (6) 0.051 (6) 0.052 (6)

20 0.031 (9) 0.030 (9) 0.032 (9) 0.030 (9) 0.031 (9) 0.033 (9)

L/R1 o1 and (n1cr) (j ¼ 1)

0.25 1.467 (1) 1.429 (1) 1.552 (1) 1.376 (1) 1.990 (1) 0.583 (1)

0.50 0.749 (11) 0.737 (11) 0.787 (10) 0.709 (11) 1.019 (11) 0.291 (10)

0.75 0.541 (12) 0.532 (12) 0.569 (12) 0.512 (12) 0.736 (12) 0.211 (11)

1.0 0.435 (12) 0.428 (12) 0.457 (12) 0.412 (12) 0.591 (12) 0.169 (11)

2.0 0.251 (2) 0.251 (2) 0.260 (2) 0.241 (2) 0.342 (2) 0.094 (2)

3.0 0.203 (11) 0.200 (11) 0.214 (11) 0.192 (11) 0.276 (11) 0.079 (10)

4.0 0.168 (10) 0.165 (10) 0.176 (10) 0.159 (10) 0.228 (10) 0.065 (10)

5.0 0.139 (5) 0.139 (5) 0.145 (5) 0.134 (5) 0.190 (5) 0.052 (5)

6.0 0.071 (5) 0.070 (5) 0.073 (5) 0.068 (5) 0.096 (5) 0.027 (5)

7.0 0.113 (10) 0.111 (10) 0.118 (10) 0.107 (10) 0.153 (10) 0.044 (10)

8.0 0.100 (6) 0.100 (6) 0.104 (6) 0.096 (6) 0.137 (6) 0.038 (6)

9.0 0.077 (6) 0.077 (6) 0.080 (6) 0.074 (6) 0.105 (6) 0.029 (6)

10 0.051 (6) 0.051 (6) 0.054 (6) 0.049 (6) 0.070 (6) 0.020 (6)

20 0.031 (9) 0.030 (9) 0.033 (9) 0.029 (9) 0.042 (9) 0.013 (9)

L/R1 o1 and (n1cr) (j ¼ 2)

0.25 1.467 (1) 1.467 (1) 1.414 (1) 1.525 (1) 1.075 (1) 3.923 (1)

0.50 0.749 (11) 0.749 (11) 0.723 (11) 0.779 (11) 0.549 (11) 2.005 (11)

0.75 0.541 (12) 0.541 (12) 0.522 (12) 0.563 (12) 0.397 (12) 1.448 (12)

1.0 0.435 (12) 0.435 (12) 0.419 (12) 0.452 (12) 0.319 (12) 1.163 (12)

2.0 0.251 (2) 0.251 (2) 0.242 (2) 0.261 (2) 0.184 (2) 0.672 (2)

3.0 0.203 (11) 0.203 (11) 0.196 (11) 0.211 (11) 0.149 (11) 0.544 (11)

4.0 0.168 (10) 0.168 (10) 0.162 (10) 0.174 (10) 0.123 (10) 0.449 (10)

5.0 0.139 (5) 0.139 (5) 0.135 (5) 0.145 (5) 0.102 (5) 0.373 (5)

6.0 0.071 (5) 0.071 (5) 0.068 (5) 0.073 (5) 0.052 (5) 0.189 (5)

7.0 0.113 (10) 0.113 (10) 0.109 (10) 0.117 (10) 0.083 (10) 0.302 (10)

8.0 0.100 (6) 0.100 (6) 0.097 (6) 0.104 (6) 0.074 (6) 0.269 (6)

9.0 0.077 (6) 0.077 (6) 0.074 (6) 0.080 (6) 0.056 (6) 0.206 (6)

10 0.051 (6) 0.051 (6) 0.049 (6) 0.053 (6) 0.038 (6) 0.137 (6)

20 0.031 (9) 0.031 (9) 0.030 (9) 0.032 (9) 0.023 (9) 0.083 (9)
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and takes its minimum value for u ¼ 7.5 as (0.215). For 11.6oup18, it is higher than the value for the
homogeneous case and takes its maximum value for u ¼ 14 as (0.252). Curve 2 corresponds to the
homogeneous case and the pertinent value of the lowest frequency parameter is 0.251. In curve 3, the case of
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Table 9

Variations of the values of P1cr, o1 and corresponding wavenumbers for homogeneous and non-homogeneous orthotropic truncated

conical shells with respect to R1/h (g ¼ 451, L/R1 ¼ 3, m ¼ 0.9)

jj z
� �

Hom. �z z
2

�z
2

�z
3

R1/h P1cr� 106 and (ncr) (j ¼ 1)

50 7.828 (8) 7.414 (9) 8.752 (8) 6.874 (9) 7.820 (8)

100 1.344 (11) 1.270 (11) 1.508 (10) 1.177 (11) 1.342 (11)

150 0.478 (12) 0.453 (12) 0.537 (12) 0.420 (12) 0.478 (12)

200 0.231 (13) 0.219 (13) 0.259 (13) 0.203 (13) 0.231 (13)

R1/h o1 and (n1cr) (j ¼ 1,2)

50 0.254 (4) 0.252 (4) 0.257 (4) 0.252 (4) 0.254 (4)

100 0.221 (4) 0.220 (4) 0.222 (4) 0.220 (4) 0.221 (4)

150 0.214 (4) 0.214 (4) 0.215 (4) 0.214 (4) 0.214 (4)

200 0.203 (11) 0.200 (11) 0.206 (11) 0.200 (11) 0.203 (11)

R1/h o1 and (n1cr) (j ¼ 1)

50 0.254 (4) 0.252 (4) 0.266 (4) 0.242 (4) 0.254 (4)

100 0.221 (4) 0.220 (4) 0.230 (4) 0.212 (4) 0.221 (4)

150 0.214 (4) 0.214 (4) 0.223 (4) 0.206 (4) 0.214 (4)

200 0.203 (11) 0.200 (11) 0.214 (11) 0.192 (11) 0.203 (11)

R1/h o1 and (n1cr) (j ¼ 2)

50 0.254 (4) 0.254 (4) 0.245 (4) 0.265 (4) 0.254 (4)

100 0.221 (4) 0.221 (4) 0.213 (4) 0.230 (4) 0.221 (4)

150 0.214 (4) 0.214 (4) 0.207 (4) 0.223 (4) 0.214 (4)

200 0.203 (11) 0.203 (11) 0.196 (11) 0.211 (11) 0.203 (11)
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jjðzÞ ¼ �e
�0:1 z
�� ��

cos uz
� �

ðj ¼ 1; 2Þ and m ¼ 0.90 is considered. For 0pup11.6, the lowest frequency

parameter is higher than that for the homogeneous case and takes its maximum value for u ¼ 4 as (0.253),
whereas, for 11.6oup18, it takes lower values and is a minimum for u ¼ 14.5, taking the value (0.249). For all
values of u the effect of the variation of Young’s moduli and density on the lowest frequency parameter is very
little (Fig. 4).

In Fig. 5 are also seen three curves pertaining to the lowest frequency parameter for three different forms of

the density variation functions. In curve 1, the case of j2 z
� �
¼ e�0:1 z

�� ��
cos uz
� �

and m ¼ 0.90 is considered. For

0pup6.3, the frequency parameter is lower than that for the homogeneous case and takes its minimum value
for u ¼ 0 as (0.108). For 6oup12, it is higher than the value for the homogeneous case and takes its maximum
value for u ¼ 10 as (0.274). Curve 2 corresponds to the homogeneous case and the pertinent value of the lowest

frequency parameter is 0.251. In curve 3, the case of j2 z
� �
¼ �e�0:1 z

�� ��
cos uz
� �

and m ¼ 0.90 is considered. For

0pup6.3, the lowest frequency parameter is higher than that for the homogeneous case and takes its
maximum value for u ¼ 0 as (0.718), whereas, for 6.3oup12, it takes lower values and is a minimum for
u ¼ 8, taking the value (0.233). For u44, the effect of the variation of the density on the lowest frequency
parameter is very little (Fig. 5).

In Fig. 6, three curves pertaining the lowest frequency parameter for three different forms of Young’s

moduli variation functions are drawn. Curve 1 is for the case of j2 z
� �
¼ e�0:1 z

�� ��
cos uz
� �

and m ¼ 0.90. The

lowest frequency parameter is higher than that for the homogeneous case if 0pup6.1 and takes its maximum
value for u ¼ 0 as (0.344). If 6.1oup12, it is lower than the value for the homogeneous case and takes its
minimum value for u ¼ 8 as (0.200). Curve 2 is for the homogeneous case and the pertinent value of the lowest
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Table 10

Variations of the values of P1cr, o1 and corresponding wavenumbers for homogeneous and non-homogeneous orthotropic conical shells

versus E0S/E0y (L/R1 ¼ 3; g ¼ 451, R1/h ¼ 200; m ¼ 0.9)

jj z
� �

Hom. �z z
2

�z
2 (+exp) (�exp)

E0S/E0y P1cr� 106 and (ncr) (j ¼ 1)

5 0.155 (11) 0.147 (11) 0.173 (11) 0.136 (11) 0.285 (11) 0.025 (11)

10 0.186 (12) 0.176 (12) 0.209 (12) 0.164 (12) 0.343 (12) 0.030 (12)

15 0.208 (12) 0.198 (13) 0.233 (12) 0.184 (13) 0.384 (12) 0.033 (12)

20 0.225 (13) 0.213 (13) 0.252 (13) 0.197 (13) 0.413 (13) 0.036 (13)

25 0.238 (13) 0.226 (13) 0.267 (13) 0.210 (13) 0.439 (13) 0.038 (13)

E0S/E0y o1 and (n1cr) (j ¼ 1,2)

5 0.143 (9) 0.140 (9) 0.144 (9) 0.140 (9) 0.142 (9) 0.148 (9)

10 0.123 (3) 0.123 (3) 0.123 (3) 0.123 (3) 0.123 (3) 0.124 (3)

15 0.185 (10) 0.183 (10) 0.187 (10) 0.183 (10) 0.185 (10) 0.192 (10)

20 0.199 (11) 0.195 (11) 0.201 (10) 0.195 (11) 0.198 (11) 0.206 (10)

25 0.192 (4) 0.192 (4) 0.193 (4) 0.192 (4) 0.192 (4) 0.193 (4)

E0S/E0y o1 and (n1cr) (j ¼ 1)

5 0.143 (9) 0.140 (9) 0.150 (9) 0.135 (9) 0.194 (9) 0.055 (9)

10 0.123 (3) 0.123 (3) 0.128 (3) 0.118 (3) 0.168 (3) 0.046 (3)

15 0.185 (10) 0.183 (10) 0.194 (10) 0.176 (10) 0.252 (10) 0.072 (10)

20 0.199 (11) 0.195 (11) 0.209 (10) 0.188 (11) 0.270 (11) 0.077 (10)

25 0.192 (4) 0.192 (4) 0.200 (4) 0.185 (4) 0.262 (4) 0.072 (4)

E0S/E0y o1 and (n1cr) (j ¼ 2)

5 0.143 (9) 0.143 (9) 0.137 (9) 0.148 (9) 0.104 (9) 0.381 (9)

10 0.123 (3) 0.123 (3) 0.119 (3) 0.128 (3) 0.090 (3) 0.329 (3)

15 0.185 (10) 0.185 (10) 0.179 (10) 0.193 (10) 0.136 (10) 0.496 (10)

20 0.199 (11) 0.199 (11) 0.192 (11) 0.207 (11) 0.146 (11) 0.531 (11)

25 0.192 (4) 0.192 (4) 0.186 (4) 0.200 (4) 0.141 (4) 0.515 (4)
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frequency parameter is 0.251. Curve 3 represents the case of j2 z
� �
¼ �e�0:1 z

�� ��
cos uz
� �

and m ¼ 0.90. For

0pup6.1, the lowest frequency parameter is lower than that for the homogeneous case and takes its minimum
value for u ¼ 0 as (0.088), whereas, for 6.1oup12, it takes higher values and is a maximum for u ¼ 8, taking
the value (0.272). For u45, the effect of the variation of Young’s moduli on the lowest frequency parameter is
very little (Fig. 6).

It is noted that the exponential function is taken into account as exp ¼ �e�0:1 z
�� ��

cos 0:7z
� �

, in the following
tables and figures.

In Table 7, variations of the values of critical dimensionless hydrostatic pressure P1cr and corresponding
circumferential wavenumber ncr for the homogeneous (m ¼ 0) and the non-homogeneous (j ¼ 1) orthotropic
truncated conical shells with different non-homogeneity cases, with respect to L/R1, i.e., for short, medium,
long and very long conical shells are presented. As the ratio L/R1 increases, the values of dimensionless
hydrostatic buckling pressure and corresponding wavenumber decrease for the homogeneous and the non-
homogeneous orthotropic truncated conical shells with all the non-homogeneity cases. When the non-
homogeneous orthotropic truncated conical shell is compared with the homogeneous orthotropic truncated
conical shell for three length ratios (short, medium and long); the percent changes in the values of P1cr are
5.3%; �12.5%, 0.1% and �84%, for the positive non-homogeneity cases as linear, parabolic, cubic and
exponential, respectively. The percent changes in the values of P1cr are 5.3%; 12.5%, 0.1% and 84%, for the
negative non-homogeneity cases as linear, parabolic, cubic and exponential, respectively. The effect of the
non-homogeneity on the values of P1cr and ncr is insignificant for very long conical shells, i.e., for L/R1410.
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In Table 8, variations of the values of lowest frequency parameter o1 and corresponding circumferential
wavenumber n1cr for homogeneous (m ¼ 0) and non-homogeneous (j ¼ 1, j ¼ 2 and j ¼ 1,2) orthotropic
truncated conical shells, with respect to L/R1 are presented. For the homogeneous and non-homogeneous
cases, the values of o1 and n1cr are changing depending on variations of the ratio L/R1; As the ratio 0.25p
L/R1p6 and L/R147, value of lowest the frequency parameter o1 decreases, whereas it increases for 6p
L/R1p7. As the ratio 0.25pL/R1o2, the value of n1cr increases, whereas, it decreases for 3pL/R1p6 and
6oL/R1p10. The effect of the non-homogeneity on the values of lowest frequency parameter o1 and the
corresponding circumferential wavenumber n1cr is little, in the all cases.

When the density is kept constant j2 z
� �
¼ 0

� �
and only Young’s moduli are changed, the higher effects on

the lowest frequency parameter are �4.5%, 5.2%, �35% and 62%, for j1 z
� �
¼ z

2
, j1 z

� �
¼ �z

2
, j1 z

� �
¼

e�0:1 z
�� ��

cos 0:7z
� �

and j1 z
� �
¼ �e�0:1 z

�� ��
cos 0:7z
� �

, respectively. When only the density varies through the

thickness direction and Young’s moduli are kept constant j1 z
� �
¼ 0

� �
, the higher effects on the lowest

frequency parameter are 3.55%, �4%, 27% and �167%, for j2 z
� �
¼ z

2
, j2 z

� �
¼ �z

2
, j2 z

� �
¼

e�0:1 z
�� ��

cos 0:7z
� �

and j2 z
� �
¼ �e�0:1 z

�� ��
cos 0:7z
� �

, respectively. When Young’s moduli vary together with the

density in the thickness direction, the higher effects on frequency parameter are low as 1% and 3%, for

jj z
� �
¼ �z

2
and jj z

� �
¼ �e�0:1 z

�� ��
cos 0:7z
� �

ðj ¼ 1; 2Þ, respectively (Table 8).
The values of the lowest or the critical dimensionless hydrostatic pressure of the homogeneous and the non-

homogeneous orthotropic truncated conical shells for three length ratios (short, medium and long) with
different semi-vertex angles are presented in Figs. 7–9. For conical shells with homogeneous and cubical non-
homogeneity cases, since the values of the hydrostatic buckling pressure are approximately same, cubical case
is not involved in these figures. From Figs. 7 to 9, it can be seen that as the semi-vertex angle increases, the
value of the critical dimensionless hydrostatic pressure decrease for the homogeneous case (m ¼ 0) and for

the non-homogeneous case jj z
� �
¼ �z

q
ðq ¼ 1; 2; 3Þ and jj z

� �
¼ �e�0:1 z

�� ��
cos 0:7z
� �

ðj ¼ 1Þ. Furthermore,

the variations of P1cr respect to semi-vertex angle are similar, for three lengths (short, medium and long) of the
conical shells.

The computation results of the buckling hydrostatic pressure and the frequency parameter for
homogeneous and non-homogeneous orthotropic truncated conical shells with medium length are given in
Tables 9–10 and Fig. 10. The values of critical dimensionless hydrostatic pressure, lowest frequency parameter
and corresponding wavenumbers for homogeneous and non-homogeneous orthotropic truncated conical
shells are listed in Table 9 with respect to R1/h, as the ratio L/R1 ¼ 3. From Table 9, it is clear that as the R1/h
ratio is increased, the values of P1cr and o1 decreases, whereas, ncr and n1cr increase for homogeneous and non-
homogeneous orthotropic truncated conical shells. As the ratio R1/h increases, the percentage effects on the
critical hydrostatic pressure for the homogeneous and non-homogeneous orthotropic truncated conical shells
are nearly equal.

When Young’s moduli vary together with the density in the thickness direction, the higher effect on

the lowest frequency parameter is 1% for j1 ¼ j2 ¼ �z
2
. When the only density varies in the thickness

direction and Young’s moduli are kept constant the higher effect on the lowest frequency parameter is 4%

for j2 ¼ �z
2
. When the density is kept constant and only Young’s moduli are changed, the higher effect

on the lowest frequency parameter is 5% for j1 ¼ z
2
. When the variation of Young’s moduli and the density

are given by power functions, it has been observed that the effect of Young’s moduli and the density variation

on the critical dimensionless hydrostatic pressure and frequency parameter is most for being parabolic and

least for being cubic. Furthermore, when the variation function is negative the conical shell gets more

unstable.

Table 10 shows variations of the values of critical dimensionless hydrostatic pressure, lowest frequency
parameter and corresponding wavenumbers for homogeneous and non-homogeneous orthotropic truncated
conical shells with different non-homogeneity functions versus E0S/E0y, as the ratio L/R1 ¼ 3. The values of
P1cr and o1 are changing depending on variations of E0S/E0y; as the ratio E0S/E0y increases, the values of P1cr

and Pcr increase. As 10pE0S/E0yp20, the values of lowest frequency parameter and corresponding
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wavenumber increase, however, as 5pE0S/E0yo10 and 20oE0S/E0yp25, these values decrease. Besides, when
E0S/E0y ratio is increased, the increasing and the decreasing intervals of the values of P1cr and o1 are changed
depending on the values of the ratio L/R1.

The effect of the variation of Young’s moduli or density is relevant. When the variation of Young’s
moduli (j ¼ 1) and the density (j ¼ 2) are given by power and exponential functions, it is observed that the
effect of this non-homogeneity on the critical parameters is relatively more in the case of the exponential
function.

Fig. 10 shows variations of the values of critical dimensionless hydrostatic pressure for homogeneous and
non-homogeneous orthotropic, truncated conical shells with different non-homogeneity functions versus m. As
m increases, the value of the critical dimensionless hydrostatic pressure increase.

5. Conclusions

In this study, the free vibration and the stability of non-homogeneous orthotropic truncated conical shells
under a hydrostatic pressure are investigated. At first, the basic relations have been obtained for orthotropic
truncated conical shells, Young’s moduli and density of which vary continuously in the thickness direction. By
applying the Galerkin method to the foregoing equations, the buckling pressure and the frequency of vibration
are obtained. Finally, carrying out some computations, the effects of the variations of conical shell
characteristics, the effects of the non-homogeneity and orthotropy on the critical dimensionless hydrostatic
pressure and frequency parameter are found for different mode numbers, when Young’s moduli and density
vary together and separately.

The numerical results support the following conclusions.
In the case of two different non-homogeneities, where the variation of Young’s moduli and the density are

represented by power and exponential functions, it is observed that the critical parameters are influenced more
from to the exponential function-type non-homogeneity. The separate variation of Young’s moduli and
density in the thickness direction has a greater influence on lowest frequency parameter when it is compared
with their combined effect. Since the non-homogeneity parameter u is in the first variation zone, non-
homogeneity has a considerable influence on the critical parameters.

When E0S/E0y ratio is increased, the increasing and the decreasing intervals of the P1cr and o1 values are
changed depending on the value of the ratio L/R1.

As the ratio L/R1 increases, the value of the dimensionless hydrostatic buckling pressure decreases for the
homogeneous and the non-homogeneous orthotropic truncated conical shells with the all non-homogeneity
cases.

As the ratio R1/h increases, the values of P1cr and o1 decrease, whereas, ncr and n1cr increase for the
homogeneous and the non-homogeneous cases. The percentage effects on the critical hydrostatic pressure for
the homogeneous and the non-homogeneous orthotropic truncated conical shells are nearly equal.

As the semi-vertex angle g increases, the values of the dimensionless critical hydrostatic pressure decrease.
The effect of the non-homogeneity on the dimensionless critical hydrostatic pressure and dimensionless
frequency parameter values is same as in short-, medium- and long-length shells.
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